3rd Cyprus Workshop on Signal Processing and Informatics

University of Cyprus, Nicosia, Cyprus
New Campus, THEE001 ROOM 148

July 15, 2010

FINAL PROGRAM
AND
BOOK OF ABSTRACTS

Organized and Sponsored by:

Technically Co-Sponsored by:

Supported by:
Java Digital Signal Processing (J-DSP), Arizona State University (NSF Award 0817596)
http://jdsp.asu.edu/JDSP_Phase3/, www.cs.ucy.ac.cy/jdsp
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>3</td>
</tr>
<tr>
<td>Workshop Organising Committee</td>
<td>4</td>
</tr>
<tr>
<td>Venue</td>
<td>4</td>
</tr>
<tr>
<td>Technical Program</td>
<td>5</td>
</tr>
<tr>
<td>Abstracts</td>
<td>9</td>
</tr>
</tbody>
</table>
Preface:
Following the successful one-day workshop we had in the last two years, we would like to cordially invite you to participate in the upcoming 3rd Cyprus Workshop on Signal Processing and Informatics (CWSPI 2010).

The overall objective of CWSPI 2010 is to disseminate new research results in several areas and help establish industry, university, and multi-university collaborations. The workshop is mainly targeted to our graduate students to present their most recent findings.

This one-day workshop hosts presentations by faculty, students, and industry researchers in the areas of signal processing image processing and analysis and informatics. A total of 13 abstracts are presented into 3 different sessions. These sessions are the following: Wireless Communications, Sensor Networks and Signal Processing, Cognitive Systems, and Biomedical Signal, Image and Video Processing. Moreover, we would like to express our sincere thanks to IEEE Cyprus Section, the IEEE EMBS Cyprus Chapter and the Cyprus Local Network for the sponsorship. The purpose of the workshop is to disseminate new research results in several areas and help establish industry, university, government and multi-university collaborations.

Last but not least we would like to express our sincere thanks to the two keynote lecturers: Prof. Andreas Ioannides, Director of Laboratory for Human brain Dynamics, AAI Scientific Cultural Services Ltd., Nicosia, Cyprus, Methods and needs for Signal processing, structure-function relationships and data mining in functional brain imaging, and Prof. Nikos Papanikolopoulos, Department of Computer Science and Engineering, University of Minnesota, USA, Camera Networks for Surveillance Systems.

Looking forward in making this workshop a yearly event. Wishing you a fruitful and joyful event.

C. Pattichis, A. Spanias, T. Kasperis, M. Pattichis, E. Kyriakou
July 2010

Topics:
- Digital signal and image processing
- Sensor networks and signal analysis
- Biomedical signal, image, and video analysis
- Wireless communications and signal processing
- Multimedia systems
- Speech, and audio, processing
- Cognitive systems
- FPGAS in signal, image and video processing.
Workshop Organizing Committee:

Chair: C. Pattichis, University of Cyprus, Cyprus
Co-Chair: A. Spanias, Arizona State University, USA

Program Chair: T. Kasparis, Cyprus University of Technology, Cyprus
Program Co-Chairs: M. Pattichis, University of New Mexico, USA
E. Kyriakou, Frederick University, Cyprus

Local Arrangements: C. Loizou, Intercollege, Cyprus
Publications: E. Kyriakou, Frederick University, Cyprus
Liaison/Publicity: M. Neophytou, MedTechSol, Cyprus
Webmaster: P. Polyviou, University of Cyprus, Cyprus
I. Constantinou, University of Cyprus, Cyprus

Venue:
Department of Computer Science, University Of Cyprus (New Campus),
THEE001 ROOM 148
P.O.Box.20537, CY-1678 Nicosia, CYPRUS

More info:
Tel.: + 357-22-892700, Fax.: + 357-22-892701, E-mail: cs@ucy.ac.cy

Webpage:
http://www.medinfo.cs.ucy.ac.cy/
http://www.dsp-conferences.info/CWSPI2010/cyprus%20workshop-2010-index.htm
Technical Program
<table>
<thead>
<tr>
<th>TIME</th>
<th>SESSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SESSION 1: Keynote Lectures</td>
</tr>
<tr>
<td></td>
<td>Chair: Marios S. Pattichis</td>
</tr>
<tr>
<td>15:00</td>
<td>Methods and needs for Signal processing, structure-function relationships</td>
</tr>
<tr>
<td></td>
<td>and data mining in functional brain imaging</td>
</tr>
<tr>
<td></td>
<td>Andreas A. Ioannides</td>
</tr>
<tr>
<td></td>
<td>AAI Scientific Cultural Services Ltd, Nicosia, Cyprus</td>
</tr>
<tr>
<td>15:30</td>
<td>Camera Networks for Surveillance Systems</td>
</tr>
<tr>
<td></td>
<td>Nikos Papanikolopoulos</td>
</tr>
<tr>
<td></td>
<td>Department of Computer Science and Engineering</td>
</tr>
<tr>
<td></td>
<td>University of Minnesota, USA</td>
</tr>
<tr>
<td></td>
<td>**SESSION 2: Wireless Communications, Sensor Networks and Signal</td>
</tr>
<tr>
<td></td>
<td>Processing**</td>
</tr>
<tr>
<td></td>
<td>Chair: Vasos Vassiliou</td>
</tr>
<tr>
<td>16:00</td>
<td>Indoor Positioning in WLAN using Radial Basis Function Networks with</td>
</tr>
<tr>
<td></td>
<td>Received Signal Strength Fingerprints</td>
</tr>
<tr>
<td></td>
<td>Christos Laoudias and Christos G. Panayiotou</td>
</tr>
<tr>
<td></td>
<td>KIOS Research Center for Intelligent Systems and Networks</td>
</tr>
<tr>
<td></td>
<td>Department of Electrical and Computer Engineering, University of Cyprus</td>
</tr>
<tr>
<td>16:15</td>
<td>Efficient Node Placement in Densely Deployed Wireless Sensor Networks</td>
</tr>
<tr>
<td></td>
<td>Charalambos Sergiou and Vasos Vassiliou</td>
</tr>
<tr>
<td></td>
<td>Department of Computer Science, University of Cyprus, Nicosia, Cyprus</td>
</tr>
<tr>
<td>16:30</td>
<td>Radar Tracking Performance When Sensing and Processing Compressive</td>
</tr>
<tr>
<td></td>
<td>Measurements</td>
</tr>
<tr>
<td></td>
<td>Ioannis Kyriakides</td>
</tr>
<tr>
<td></td>
<td>Department of Engineering, University of Nicosia</td>
</tr>
<tr>
<td>16:45</td>
<td>Water Contamination Fault Diagnosis and Security Monitoring in Water</td>
</tr>
<tr>
<td></td>
<td>Distribution Systems</td>
</tr>
<tr>
<td></td>
<td>Demetrios G. Eliades, Marios M. Polycarpou</td>
</tr>
<tr>
<td></td>
<td>KIOS Research Center for Intelligent Systems and Networks</td>
</tr>
<tr>
<td></td>
<td>Dept of Electrical and Computer Engineering, University of Cyprus</td>
</tr>
<tr>
<td>17:00</td>
<td>Signal and Information Processing for Solar Panel Array Management</td>
</tr>
<tr>
<td></td>
<td>Henri Braun, Santoshi Buddha, Venkatachalam Krishnan, Cihan Tepedelenlioglu, Raja Ayyanar, George Maracas, and Andreas Spanias</td>
</tr>
<tr>
<td></td>
<td>SenSIP Center and Consortium, School of ECEE, Arizona State University,</td>
</tr>
<tr>
<td></td>
<td>USA</td>
</tr>
<tr>
<td>17:15-17:45</td>
<td>COFFEE BREAK</td>
</tr>
<tr>
<td></td>
<td>SESSION 3: Cognitive Systems</td>
</tr>
<tr>
<td></td>
<td>Chair: Chris Christodoulou</td>
</tr>
<tr>
<td>17:45</td>
<td>Measuring single neuron operational modes using a metric based on the</td>
</tr>
<tr>
<td></td>
<td>membrane potential slope</td>
</tr>
<tr>
<td>Time</td>
<td>Title</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>18:00</td>
<td>Evolving internal rewards for effective multiagent learning in game theoretical situations</td>
</tr>
<tr>
<td>18:15</td>
<td>Per-residue weight updating procedure for Protein Secondary Structure Prediction with Bidirectional Recurrent Neural Networks</td>
</tr>
<tr>
<td>18:30</td>
<td>Isolated Word Speech Recognition using Rank Order Coding</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>18:45</td>
<td>The use of Granger causality for the characterization of bidirectional interactions of human brain activity during induction of general anaesthesia</td>
</tr>
<tr>
<td>19:00</td>
<td>An Integrated CAD System for the Assessment of Endometrial Cancer</td>
</tr>
<tr>
<td>19:15</td>
<td>AM-FM Based Evaluation of Despeckled Filtering in Ultrasound Imaging of the Carotid Artery</td>
</tr>
<tr>
<td>19:30</td>
<td>Ultrasound Video Transmission in m-Health Systems</td>
</tr>
</tbody>
</table>

SESSION 4: Biomedical Signal, Image and Video Processing

Chair: Efthyvoulos Kyriakou
<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>19:45</td>
<td>CLOSING REMARKS</td>
</tr>
<tr>
<td></td>
<td>Chair: Andreas Spanias</td>
</tr>
</tbody>
</table>

1School of Electrical, Computer, and Energy Eng., Arizona State University, Tempe, USA
4Intercollege, Department of Computer Science, School of Sciences, Limassol, Cyprus
Dept. of Computer Science and Eng., Frederick University Cyprus, Lemesos, Cyprus
Abstracts
Session 1: Keynote Lectures
Methods and needs for Signal processing, structure-function relationships and data mining in functional brain imaging

Andreas A. Ioannides, Vahe Poghosyan and Lichan Liu

Laboratory for Human brain Dynamics, AAI Scientific Cultural Services Ltd.,
33, Arch. Makarios III Avenue, Nicosia, 1065, Cyprus
Web page: http://humanbraindynamics.com

Emails: a.ioannides@humanbraindynamics.com; l.liu@humanbraindynamics.com; v.poghosyan@humanbraindynamics.com

Modern functional neuroimaging methods demand detection of weak signals generated directly or indirectly by neuronal activity which are often much weaker than the ambient noise. The successful disentanglement of the signal of interest from noise and its further analysis often yields huge volumes of data. The detection of the weak signals requires integrating sophisticated instrumentation and powerful signal processing techniques, while the organization of the results into meaningful components requires powerful data mining tools. Determining the relative independence of functional nodes and/or constructing the networks they form demands information theoretic concepts and graph theory. Finally, the full understanding of how the different generators of the signal function and hence how failures lead to pathology requires relating with precision function and anatomy within and across subjects, demanding sophisticated computations drawing on concepts from differential geometry and topology.

The paper describes some of our recent results [1-4] using tomographic analysis of magnetoencephalography (MEG) data, drawing attention to open problems in signal processing and data mining and emphasizing the need for new tools for studying and representing structure-function relationships. Most of the problems demand implementation of existing knowledge in new domains. Some problems require innovative adaptations of existing theoretical frameworks and possibly new theoretical insights.

[4] Papadelis C, Eickhoff SB, Zilles K and Ioannides AA “BA3b and BA1 activate in a serial fashion after median nerve stimulation: direct evidence from combining source analysis of evoked fields and cytoarchitectonic probabilistic maps” (under review; NeuroImage)
[5] Maruyama M and Ioannides AA "Modulus and Direction of the Neural Current Vector Identify Distinct Functional Connectivity Modes between Human MT+ areas" (under review; Jounal of Neuroscience Methods)
Part of the work was supported by Cyprus Research Promotion Foundation grants upgrade/info/0308/02 and human/sociol/0308(BE)/16.

Corresponding author: Andreas A. Ioannides, AAI Scientific Cultural Services Ltd, Nicosia, Cyprus. Email: a.ioannides@humanbraindynamics.com;
Algorithmical and hardware advances create many opportunities for image- and vision-based intelligent systems that are human-centric. Computing is ubiquitous in every household. Computers are becoming smaller, more portable, and embedded in many common appliances and devices. In addition, digital cameras are becoming pervasive in society. They are appearing in many varieties, and are embedded in many devices from cars to telephones. This work focuses on the problem of camera networks for security applications.

We will present the Hyperion framework (deployed to several Mass Transit sites around the U.S) which involves the computation of an extensive set of video-analytics based on human and crowd activity monitoring, automatic camera placement, camera-to-camera tracking, semi-autonomous calibration, and video forensics analysis. An innovative user interface allows a single user to monitor thousands of cameras. We augment the system capabilities by pairing cameras with robots in order to provide swift mobility in case that the data requires so. Finally, we try to create an engineering/scientific solution which is respectful of design, privacy, and societal issues.

Corresponding Author: Nikos Papanikolopoulos, Distinguished McKnight University Professor, Department of Computer Science and Engineering, University of Minnesota, npapas@cs.umn.edu
SESSION 2: Wireless Communications, Sensor Networks and Signal Processing
Indoor Positioning in WLAN using Radial Basis Function Networks with Received Signal Strength Fingerprints

Christos Laoudias and Christos G. Panayiotou

KIOS Research Center for Intelligent Systems and Networks
Department of Electrical and Computer Engineering, University of Cyprus, Nicosia
laoudias@ucy.ac.cy, christosp@ucy.ac.cy

Positioning techniques enable the provision of location information regarding people, mobile devices and equipment. Estimating location accurately is a challenge especially inside buildings, where satellite-based positioning is not applicable due to the severe attenuation or blockage of satellite signals. Positioning accuracy is the key issue to effectively support advanced indoor location aware services. Indicative applications include in-building guidance, asset tracking in hospitals or warehouses and autonomous robot navigation.

Different positioning technologies have been discussed in the literature including infrared, Bluetooth, RFID, UWB, ultrasound and WLAN. Several positioning methods rely on WLANs, mainly due to the wide availability of relevant infrastructure in indoor environments. These methods exploit Angle of Arrival (AOA), Time of Arrival (TOA), Time Difference of Arrival (TDOA) and Received Signal Strength (RSS) measurements from Access Points (AP) to infer the unknown user location. In the context of WLAN positioning, RSS measurements are usually preferred, because they can be easily collected without the need for specialized and expensive equipment. Indoor radio propagation models have been used to transform RSS values into distances from at least three relevant APs in order to determine user location through multilateration. However, this approach has some limitations, mainly due to the multipath effect that renders the use of standard log-distance propagation models inadequate. Another problem is that the exact locations of the APs are required, and such information may not be available or is hard to obtain. Fingerprinting methods address both issues by utilizing RSS fingerprints collected a priori at some predefined reference points in the area of interest. Location can then be estimated using the currently measured fingerprint to find the best match among the reference fingerprints. Matching is based on a distance measure between the current and reference fingerprints or on probability distributions.

In our approach, we employ Radial Basis Function (RBF) networks and use the collected reference data to build a mapping between the RSS fingerprints and location coordinates. We present an efficient RBF-based positioning method and provide well defined ways for setting the RBF parameters. We investigate the performance of the RBF-based method as a function of the number of available APs, reference points or fingerprints and compare it to some well known approaches.

Corresponding author:
Christos Laoudias
KIOS Research Center for Intelligent Systems and Networks
Department of Electrical and Computer Engineering, University of Cyprus, Nicosia
laoudias@ucy.ac.cy
Efficient Node Placement in Densely Deployed Wireless Sensor Networks

Charalambos Sergiou and Vassos Vassiliou

Department of Computer Science, University of Cyprus, Nicosia, Cyprus
Email: {sergiou, vasosv}@cs.ucy.ac.cy

The emergence of mission-critical and information demanding applications in Wireless Sensor Networks (WSNs) renders performance control essential for mission accomplishment. Heavy traffic is a major factor that affects significantly the performance of any type of network. The situation worsens in low-powered, unreliable WSNs. A prominent factor that under specific circumstances can improve or deteriorate the performance of WSNs under heavy load can be the way nodes are placed on the monitored field. Proper node placement is essential to ensure good sensing coverage and communication connectivity. In this paper we present and analyze several ways that nodes can be placed on a plane and we compare the performance of specific routing and congestion control algorithms under these placements.

Specifically we employ four different placements. A deterministic placement called Grid Placement, a semi deterministic placement called Biased Random placement as well as two non- deterministic placements called, Simple Diffusion, and Random placement.

In Grid placement nodes are placed strictly on the crossed lines of a grid. In Biased random placement nodes are placed randomly but in pre-specified sections of the grid (near the source and the sink), while in Simple Diffusion nodes are placed as if scattered from the air, centering on the sink. Finally in Random placement nodes are scattered completely randomly on the plane.

Each algorithm that we employ in our research represents a special category of congestion control or routing algorithm in Wireless Sensor Networks. These are ESRT which is a rate limiting algorithm focusing on reliability, SenTCP which is a rate-limiting algorithm focusing on congestion, HTAP, an algorithm based on the utilization of unused resources to mitigate congestion and Directed Diffusion algorithm, an algorithm not explicitly designed for congestion control but it can be considered as so, since it employs a combination of resource increment and data rate reduction, by reinforcing “good” paths and pruning off “bad quality” paths.

Simulation results of these algorithms under the considered placements prove that algorithms which employ multiple or alternative paths for forwarding the excess of traffic from source to sink, can significantly improve their performance under specific node placements.

Acknowledgement:
This work has been conducted under the European Union Project GINSENG funded under the FP7 Program (FP7/2007- 2013) grant agreement no 224282.

Corresponding Author:
Vassos Vassiliou, Department of Computer Science, University of Cyprus, Nicosia, Cyprus
Email: vasosv@cs.ucy.ac.cy
Radar tracking performance is improved when using waveforms at high delay-Doppler resolution with concentrated ambiguity functions. High resolution measurement acquisition and processing, however, requires high rate sampling and intensive processing. Alternatively, compressive sensing and processing can be used to significantly reduce data rates with no loss in resolution. The drawback is, however, that using compressive measurements increases ambiguity function sidelobes and, thus, the tracking error.

In this paper, compressive sensing and processing is applied to the problem of single target tracking. The effect of compressive sensing and processing on the ambiguity function sidelobes is examined. Moreover, estimation using compressively sampled and processed Björck constant amplitude zero autocorrelation (CAZAC) sequences is shown to be improved over estimation using linear frequency modulated waveforms sampled at the Nyquist rate. This shows that low-rate acquisition and processing maintains reliable tracking performance at high resolution, while simplifying the receiver and reducing computational expense.
Water Contamination Fault Diagnosis and Security Monitoring in Water Distribution Systems

Demetrios G. Eliades, KIOS Research Center for Intelligent Systems and Networks
Dept of Electrical and Computer Engineering, University of Cyprus,
Marios M. Polycarpou, KIOS Research Center for Intelligent Systems and Networks
Dept of Electrical and Computer Engineering, University of Cyprus,
eldemet@ucy.ac.cy, mpolycar@ucy.ac.cy

Water resources management is a key challenge that will become even more crucial in the years ahead. Water distribution systems are responsible for delivering clean water to consumers, and have an important role in sustaining certain vital societal functions. When a system fault occurs, such as water contamination or a pipe break, these societal functions may be affected negatively. In the previous years, various aspects of the security monitoring problem in water distribution systems have been examined; in addition, robust fault diagnosis algorithms have been developed within a system-theoretic framework. An open research area is the formulation of a system-theoretic framework suitable for fault diagnosis and security monitoring in water distribution systems.

In this study, we present an overview of the problem formulation and a method to find locations in a water distribution network, where on-line quality sensors should be installed, in order to minimize the risk of a severe damage on the population. In addition, we present an impact evaluation and source-area isolation algorithm to assist decision makers during the “confirmation stage” of a “credible” contamination fault.

Corresponding author: Demetrios G. Eliades, KIOS Centre for Intelligent System and Networks, eldemet@ucy.ac.cy
We will present a new project that we proposed recently to a company and a federal agency. The project addresses signal processing methods for controlling photovoltaic arrays and inverters through smart monitoring devices. The tasks of the project include studying how the available information will improve inverter efficiency, examining communication and networking methodologies for data flow through the system, and investigation of signal processing and optimization methodologies and data visualization to improve overall array performance and health.
SESSION 3: Cognitive Systems
Measuring single neuron operational modes using a metric based on the membrane potential slope

Achilleas Koutsou, Chris Christodoulou

Department of Computer Science, University of Cyprus, Nicosia, Cyprus
fachilleas.k, cchristg@cs.ucy.ac.cy

We present a metric for measuring the response triggered synchrony of the input spike trains of a simple model neuron. In their simplest form, neurons sum incoming action potentials (spikes) and subsequently fire response spikes, when the potential of the cell's membrane reaches a fixed threshold. Upon firing a spike, the neuron's membrane potential is reset to a predefined value and the summation of incoming spikes continues. Our proposed metric is able to distinguish between the two operational modes that neurons are thought to be employing: temporal integration and coincidence detection. The importance of this distinction lies in the fact that each mode implies a corresponding encoding mechanism; temporal integration suggests that information is encoded on the average firing rate, while coincidence detection indicates the importance of timing of individual spikes [1]. Our metric is based on previous work that shows how higher levels of input synchrony result in higher pre-spike membrane potential slopes [2]. Based on this, we use the normalized mean slope of the membrane potential prior to the response spikes that are fired during a trial, to measure varying levels of each operational mode (i.e., measure the relative contribution of each mode to the firing of the neuron). More specifically, this metric is able to identify different levels of synchrony between input spike trains, with high synchrony denoting coincidence detection and low synchrony denoting temporal integration. The metric differs from other work on measuring spike train correlations and synchrony [3, 4] in that it only responds to such correlations between input spike trains when they are responsible for the triggering of response spikes. In this way, the metric is only concerned with the input statistics that affect its own spiking, in other words, it is sensitive to the response-relevant statistics of the input. We will present how the metric reliably responds to control experiments of a simulated neuron, as well as what it tells us about models and simulations that reproduce biophysical phenomena.

Corresponding author: Achilleas Koutsou, University of Cyprus, achilleas.k@cs.ucy.ac.cy

References
Evolving internal rewards for effective multiagent learning in game theoretical situations

Vassilis Vassiliades and Chris Christodoulou

Department of Computer Science, University of Cyprus
{v.vassiliades, cchrist}@cs.ucy.ac.cy

In this study, we investigate the importance of rewards in Multiagent Reinforcement Learning in the context of the Iterated Prisoner's Dilemma. We use an evolutionary algorithm to evolve valid payoff structures with the aim of encouraging mutual cooperation. An exhaustive analysis is performed by investigating the effect of: i) the lower and upper bounds of the search space of the payoff values, ii) the reward sign, iii) the population size, and iv) the mutation operators used. Our results indicate that valid structures that encourage cooperation can quickly be obtained, while their analysis shows that: i) they should contain a mixture of positive and negative values and ii) the magnitude of the positive values should be much smaller than the magnitude of the negative values.

Acknowledgement: Funded by the University of Cyprus under an internal research project grant.

Corresponding Author: Vassilis Vassiliades, Department of Computer Science, University of Cyprus, V.Vassiliades@cs.ucy.ac.cy
Successful protein secondary structure prediction is an important step towards modeling protein 3D structure, with several practical applications. Even though in the last four decades several PSSP algorithms have been proposed, we are far from being accurate. The Bidirectional Recurrent Neural Network (BRNN) architecture of Baldi et al. [1] is currently considered as one of the optimal computational neural network type architectures for addressing the problem.

Even though we implement the same BRNN architecture, we use a modified training procedure. More specifically, our aim is to identify the effect of the contribution of local versus global information, by varying the length of the segment on which the Recurrent Neural Networks operate for each residue position considered. In addition, the network is trained with an on-line training procedure by using the backpropagation learning algorithm, where the weight updates occur for every amino acid, as opposed to Baldi et al. [1], where the weight updates are applied after the presentation of the entire protein.

Our results with a single BRNN are better than Baldi et al. [1] by three percentage points (Q3) and comparable to results of [1] when they use an ensemble of 6 BRNNs. In addition, our results improve even further when sequence-to-structure output is filtered in a postprocessing step, with a novel Hidden Markov Model-based approach.

References

Corresponding Author: Chris Christodoulou, Department of Computer Science, University of Cyprus, cchrist@cs.ucy.ac.cy
Isolated Word Speech Recognition using Rank Order Coding

Alexandros Kyriakides, University of Cyprus, Department of Electrical and Computer Engineering <alexandros.kyriakides@ucy.ac.cy>

Constantinos Pitris, University of Cyprus, Department of Electrical and Computer Engineering <cpitris@ucy.ac.cy>

Julius Georgiou, University of Cyprus, Department of Electrical and Computer Engineering <julio@ucy.ac.cy>

Andreas Spanias, Department of Electrical Engineering, SenSIP Center and Industry Consortium, Arizona State University, Tempe, Arizona, USA <spanias@asu.edu>

Rank-order coding has been recognized as a viable alternative to rate-order coding for modeling the human visual system. Recently, speech recognition systems using rank-order coding networks have been evaluated and found to outperform Hidden Markov Models (HMM) in certain isolated word recognition experiments, particularly in the presence of background noise. Such systems also exhibit additional advantages in terms of training. We present a simple word recognition system using a rank order coding network which uses the spectrogram representation of spoken words as input.

Alexandros Kyriakides, University of Cyprus, Department of Electrical and Computer Engineering <alexandros.kyriakides@ucy.ac.cy>
SESSION 4: Biomedical Signal, Image and Video Processing
The use of Granger causality for the characterization of bidirectional interactions of human brain activity during induction of general anaesthesia

Nicoletta Nicolaou¹, Dr. Saverios Houris², MD, and Julius Georgiou¹

¹ Holistic Electronics Research Lab, KIOS, Dept. of Electrical and Computer Engineering, University of Cyprus, Cyprus
² Intensive Care Anaesthesiology Dept., Nicosia General Hospital, Cyprus

General anaesthesia (GA) is a reversible state of unconsciousness and depression of reflexes to afferent stimuli, induced by the administration of chemical agents [1]. Since the mechanism by which consciousness emerges is still not fully understood, the mechanism by which general anaesthetics prevent consciousness is also largely unexplained. One approach to understanding this critical mechanism is to look for invariant changes that manifest themselves in observables of the human brain (EEG).

Granger causality (GC), which has yet to be applied in the study of GA, can provide an insight into interactions of different brain areas. GC is a linear measure quantifying the bidirectional interaction between two time series, \(X \) and \(Y \), by looking at whether the prediction of \(X \) (\(Y \)) is improved by incorporating information from \(Y \) (\(X \)) [2]. Large values of GC imply strong interaction. The direction of interaction can be deduced from the difference: \(D = GC_{Y \rightarrow X} - GC_{X \rightarrow Y} \). A change in the sign of \(D \) implies a change in the direction of interaction.

We investigated the interactions between different brain areas during induction of anaesthesia, using GC. EEG data from 10 male patients, who gave written informed consent for their participation, was analysed. The data was collected at the Nicosia General Hospital while patients underwent general or urological surgery under GA. 8-minute segments corresponding to induction of anaesthesia with a propofol bolus were extracted from the continuous EEG records (3mins prior to and 5mins after induction). For each subject, 5 brain areas were defined as the average EEG activity from the 19 available electrodes: left and right frontal, left and right posterior, and midline areas. GC and \(D \) were estimated for each subject and pair of brain areas, and values were then averaged over all subjects. Prior to induction weak unidirectional interactions were found between posterior and midline areas to frontal areas. Administration of the anaesthetic bolus reversed the direction and increased the strength of the interactions. The lack of strong unidirectional interactions while the patient is awake is a reflection of the lack of generalised synchrony, as each brain area is involved in more localised tasks. Induction of anaesthesia induced strong unidirectional interactions. This indicates that the brain entered a synchronised state, with frontal areas acting as synchronisation pacemakers. Our findings suggest that GC can capture the physiological changes in the EEG activity, which are associated with administration of anaesthetic agents.

References

Corresponding author: Nicoletta Nicolaou; Email: nicoletta.n@ucy.ac.cy
An Integrated CAD System for the Assessment of Endometrial Cancer

I. P. Constantinou1&3, C. A. Koumourou1, M. S. Neofytou3, V. Tanos2, C. S. Pattichis3, M. S. Pattichis4, E.C. Kyriakou5

1MedTechSol (Medical Technology Solutions) Ltd, Nicosia, Cyprus
e-mail: {ikonst01, tina, mneoph} @cs.ucy.ac.cy
2Aretaeio Hospital, Nicosia, Cyprus
e-mail: v.tanos@aretaeio.com
3Department of Computer Science, University of Cyprus, Nicosia, Cyprus
e-mail: pattichi@ucy.ac.cy
4Dept. of Elect. and Comp. Eng., University of New Mexico, Albuquerque, USA
e-mail: pattichis@ece.unm.edu
5Dept. of Computer Science and Eng., Frederick University Cyprus, Lemesos, Cyprus
email: e.kyriacou@frederick.ac.cy

In this study we present an integrated computer aided diagnosis (CAD) system supporting the assessment of endometrial tissue in hysteroscopy imaging. The system consists of two components, the electronic patient record and the hysteroscopy imaging (CAD system). The electronic patient record is based on information collected from: appointments, patient info, hysteroscopy reporting and pharmacy. The CAD system is based on ROI manual or semi-automated extraction, color texture feature analysis, and SVM and C4.5 classification for differentiating between normal vs abnormal ROIs. The highest percentage of correct classifications score (%CC) was 79%, and it was obtained for the SVM classifier for the Y and the RGB color channels using the SF+SGLDS texture feature sets. The C4.5 algorithm gave slightly lower classification scores, but also classification rules. The proposed system offers an integrated platform to the physician for assessing suspicious areas of endometrial cancer.

Acknowledgement:
This study was partially funded by the Ministry of Commerce and Industry, Cyprus, Call for High Technology and Innovative Incubator Companies, project entitled: “A Computer Aided Diagnostic tool in Gynaecological Endoscopy (CAD_Gen)”, May 2008 –April 2010.
AM-FM Based Evaluation of Despeckled Filtering in Ultrasound Imaging of the Carotid Artery

C.P. Loizou\(^1\), M.S. Pattichis\(^2\), T. Kasparis\(^3\), A. Zavou\(^3\), C.S. Pattichis\(^4\)

\(^1\)Intercollege, Department of Computer Science, School of Sciences, Limassol, Cyprus
\(^2\)University of New Mexico, Dept. of Electrical and Computer Engineering, Texas, USA
\(^3\)Cyprus University of Technology, Limassol, Cyprus
\(^4\)University of Cyprus, Department of Computer Science, Nicosia, Cyprus

The objective of this work was to carry out a comparative evaluation of despeckle filtering based on Amplitude Modulation-Frequency Modulation (AM-FM) analysis, image quality evaluation metrics, and visual evaluation by medical experts in the assessment of ultrasound images of the intima media thickness (IMT) of the common carotid artery (CCA). Furthermore, to investigate how AM-FM characteristics are affected by age. A total of fourteen despeckle filters were evaluated based on local statistics, median filtering, pixel homogeneity, geometric filtering, homomorphic filtering, anisotropic diffusion, nonlinear coherence diffusion, and wavelet filtering. The study was performed on 100 longitudinal-section ultrasound images acquired from asymptomatic subjects at risk of atherosclerosis. The images were automatically segmented where the intima-media complex was identified, and separated into three different age groups, namely below 50, 50-60, and above 60 years old.

The results of this study suggest that the homogeneous mask area filter, \(lsminsc\), gave the best performance, followed by the non-linear diffusion filter, \(nld\), for the age groups below 50 and 50 to 60 years old. The filters Kuhawara followed by the hypermedian, gave the best performance for the age groups <50 and > 60. Finally the filters coherence enhancing diffusion, and hypermedian, gave the best performance for the age groups 50 to 60 and > 60. These filters improved the class separation between the three different age groups based on the statistics of the extracted AM-FM features, gave a better mahalanobis distance, and improved the visual assessment carried out by the an expert.

In conclusion, this study showed that a different pre-processing of the image may be required based on the age groups defined above. Further work is needed to evaluate at a larger scale and in clinical practice the performance of the proposed despeckle filters in the automated segmentation, texture analysis and classification of carotid ultrasound images.
Recent advances in video compression, network technologies, and computer technologies have contributed to the rapid growth of mobile health (m-health) systems and services. Wide deployment of such systems and services is expected in the near future, and it’s foreseen that they will soon be incorporated in daily clinical practice. This paper covers a brief overview of the basic components of a wireless video m-health system, focusing on the assessment of diagnostic quality.