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Abstract—We propose a unifying framework for efficient encod-
ing, transmission, and quality assessment of atherosclerotic plaque
ultrasound video. The approach is based on a spatially varying
encoding scheme, where video-slice quantization parameters are
varied as a function of diagnostic significance. Video slices are auto-
matically set based on a segmentation algorithm. They are then en-
coded using a modified version of H.264/AVC flexible macroblock
ordering (FMO) technique that allows variable quality slice en-
coding and redundant slices (RSs) for resilience over error-prone
transmission channels. We evaluate our scheme on a representative
collection of ten ultrasound videos of the carotid artery for packet
loss rates up to 30%. Extensive simulations incorporating three
FMO encoding methods, different quantization parameters, and
different packet loss scenarios are investigated. Quality assessment
is based on a new clinical rating system that provides indepen-
dent evaluations of the different parts of the video (subjective). We
also use objective video-quality assessment metrics and estimate
their correlation to the clinical quality assessment of plaque type.
We find that some objective quality assessment measures com-
puted over the plaque video slices gave very good correlations to
mean opinion scores (MOSs). Here, MOSs were computed using
two medical experts. Experimental results show that the proposed
method achieves enhanced performance in noisy environments,
while at the same time achieving significant bandwidth demands
reductions, providing transmission over 3G (and beyond) wireless
networks.

Index Terms—Error resilience, flexible macroblock ordering
(FMO), H.264, mobile-health (m-health), telemedicine, ultrasound
video, video-quality assessment (VQA), 3G.
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I. INTRODUCTION

OVER the past decade, there has been an impressive growth
in the development of mobile-health (m-health) systems

and services [1], [2]. Technological advances in hardware, dig-
ital signal, image and video compression, and networks have
significantly contributed to new m-health systems and services.

The success in the deployment of medical video streaming
systems has benefited from advances in video compression tech-
nology and wireless networks infrastructure. Current state-of-
the-art H.264/AVC [3] compression standard comprises effi-
cient encoding to match the underlying transmission medium
data rate, in a timely manner (real-time), and low complexity
decoder. This allows for low power implementation on mo-
bile devices. On the other hand, advances in wireless networks’
infrastructure have enabled data transfer communication rates
previously only available to wired infrastructures. Mobile com-
munication networks coverage is extended between 80% and
90% of a country’s region, while satellite systems practically
enable communication across the globe [2].

In spite of this remarkable growth of medical video
telemedicine systems, wireless channels remain error prone.
Increase in available data rates is soon met by continuously in-
creasing demands for medical video bandwidth. Different from
conventional video-streaming quality requirements, the quality
of medical video transmission systems is measured in terms of
their diagnostic yield. The reconstruction of clinically sensitive
video regions needs to be of very high quality. Degradation of
clinically sensitive regions can lead to deterioration of the sys-
tem’s objective of remote diagnosis and care. The absence of
efficient video-quality assessment (VQA) algorithms, both ob-
jective and subjective, contributes to the challenges involved in
the design of a system of consistent diagnostic quality.

The motivation of this study is to develop a framework that
provides: 1) a simulation environment for investigating m-health
video communications over noisy wireless channels; 2) effi-
cient ultrasound video encoding based on clinical criteria; and
3) introduce objective and subjective criteria for clinical VQA.
This motivates the study of an end-to-end system that allows
us to investigate how varying the encoding parameters can
affect the clinical quality of the decoded video. The basic sys-
tem is demonstrated on the wireless transmission of atheroscle-
rotic plaque ultrasound videos. Here, the envisioned applica-
tion scenario is to provide a system that allows clinicians to
evaluate clinical ultrasound videos for emergency telemedicine
applications.

1089-7771/$26.00 © 2011 IEEE
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Fig. 1. Atherosclerotic plaque video image examples. The plaque boundaries and nearest walls are outlined by an automatic segmentation algorithm [22].
(a) Predominantly echogenic plaque. (b) Predominantly echolucent plaque. (c) Demonstrative plaque motion at systole and diastole with different motions for the
echogenic and echolucent portions. Exam date information has been removed from (b) and (c).

TABLE I
DIAGNOSTIC ROI CONTRIBUTION TO EACH CLINICAL RATING

Ultrasound video is widely used in vascular imaging to visual-
ize the arterial lumen, plaque, and wall. Medical experts evaluat-
ing carotid artery ultrasound video are mainly interested in iden-
tifying plaque presence, the corresponding degree of stenosis,
as well as the plaque type. Monitoring of the arterial character-
istics like the vessel lumen diameter, the intima media thickness
of the far wall, and the morphology of the atherosclerotic plaque
are important in order to assess the severity of atherosclerosis
and evaluate its progression [4].

The first objective is to ensure that the clinical data in the
transmitted video is sufficient to identify the presence of the
plaque and its boundary. To assess the degree of stenosis, the
boundary of the plaque, its size, as well as the distance to the
nearest arterial wall needs to be visualized. In Fig. 1(a) and (b),
we present frames of the segmented video plaques with the as-
sociated near and far arterial walls. Furthermore, stenosis needs
to be visualized throughout the cardiac cycle, over the systolic
and diastolic phases, as the plaque moves [see Fig. 1(c)]. This
can be facilitated by the ECG part of the video (see lower right
in Fig. 3). Visualization of the echolucent and echogenic plaque
regions, as well as their corresponding motions throughout the
cardiac cycle is of vital importance in assessing plaque stability
[see Fig. 1(c)]. The remaining part of the video carries little
diagnostic information.

This paper provides a unifying framework for the following.
1) Mapping clinical criteria to diagnostic encoding: Clinical

criteria are first used for determining the regions of diag-
nostic interest (see Table I). The regions are then used to
specify video slices with independent coding control. A
spatially varying quality map is used for efficient video-
slice encoding.

2) Encoding for mobile communications through noisy chan-
nels: Wireless video transmission requires that decoding
performance needs to be evaluated as a function of packet
loss rates (PLRs), available bitrates, and the mobile de-
vice resolution and frame rates. A unifying framework is
proposed that provides error-resilient encoding that allows
for reliable performance at large PLRs.

3) VQA based on clinical criteria: Both objective and sub-
jective evaluations are used for measuring the quality of
the decoded video slices. To establish the validity of the
approach, we use the correlation between the medical ex-
perts’ mean opinion scores (MOSs) and a number of ob-
jective measurements.

4) Coarse to fine parameter optimization based on VQA:
Here, the goal is to determine video encoding parameters
that can provide acceptable video quality. The approach
allows us to determine the minimum bitrates needed for
transmission.

The aforementioned proposed methodology targets an encod-
ing setting that will allow the transmission of adequate diagnos-
tic quality video over 3G and emerging mobile telecommuni-
cations networks. Continuous medical expert feedback and ob-
jective video-quality-evaluation guide the process. Preliminary
versions of this paper, using limited datasets, appear in [5]–[7].

The rest of the paper is organized as follows. Section II sum-
marizes some related work. Section III provides the method-
ology. An analysis of the results is presented in Section IV.
Section V provides the discussion and concluding remarks.

II. BACKGROUND

Unique requirements associated with end-to-end medical
video compression and transmission have driven a number of
studies in the literature. Istepanian et al. [8] developed a quality
of service (QoS) ultrasound streaming rate control algorithm.
Based on the concept of reinforcement learning, the frame rate
and quantization step are varied as a function of the state of the
network. Simulations and real-time experiments validate the
proposed mechanism utilizing the robotic tele-ultrasonography
system OTELO [9] over 3.5G wireless networks. Results con-
form to a predefined medical QoS criterion. The OTELO system
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is also used in [10], where multilayer control is employed to op-
timally tune source- and channel-encoding parameters. Frame
rate, quantization step, intrarefreshing period, and average code-
rate channel protection are the key parameters that are varied in
these experiments.

The design of an elastic region of interest (ROI) coding that
incorporates different quantization levels for ROI and non-ROI,
targeting diagnostically lossless encoding over bitrate-limited
wireless channels is presented in [11]. An encoder state dia-
gram for different quality levels is designed and a state transi-
tion is considered for every group of pictures (GOP), utilizing
physician expert feedback. An application in acute childhood
respiratory distress is examined. A saliency-based visual atten-
tion ROI coding for low-bitrate medical video transmission is
proposed in [12].

ROI coding is used for adaptive transmission of medical im-
ages in [13], as well as scalable coding of video snapshots over
simulated wireless networks. Context awareness is introduced
based on patient’s status monitoring and resource availability
of the underlying transmission medium. Scalable video coding
(SVC) employing spatiotemporal scalability for a number of
ultrasound videos over 3G and wireless local area networks
is documented in [14]. The authors examined how wireless
transmission medium parameters (data rate, packet loss, delay,
jitter, and latency) relate to the diagnostic quality of the decoded
video.

A synopsis of the aforementioned state-of-the-art systems re-
veals the current trends in the design considerations of reliable
video telemedicine systems. Efficient compression methods in-
clude ROI encoding [11]–[13], SVC encoding [13], [14], while
adaptive encoding taking into account underlying channel’s pa-
rameters is undertaken by [8], [10], [13], and [14]. Diagnostic
validation is incorporated in [8], [11], and [14].

A. Objective VQA

Objective VQA is an emerging area of active research [15],
[16]. This is very different than image-quality assessment that
has seen significant growth and success over the past five years.

Significant problems associated with the use of image to
video-quality metrics necessitate the development of new VQA
algorithms that will correlate with perceived video quality. In
order to achieve this, video aspects such as motion and QoS need
to be considered. Toward this direction, the National Telecom-
munications and Information Administration developed the
video quality model (VQM) in 2004 [17]. The recently pro-
posed motion-based video integrity evaluation (MOVIE) [16]
algorithm outperforms all VQA algorithms to date [18]. Still,
there is a strong demand for clinically driven video-quality
metrics.

Unfortunately, our evaluation of the MOVIE and VQM algo-
rithms showed that they do not work very well with the small
sizes associated with video slices of atherosclerotic plaque ul-
trasound videos. In private communications with the authors of
the MOVIE metric, it was suggested that this is mainly due to
the relatively small sizes associated with the extracted video
slices.

The peak SNR (PSNR) is still the most widely used quality
metric, despite failing to efficiently assess perceived video qual-
ity [18]. The PSNR utilizes the MSE between the original and
transmitted video on a frame-by-frame basis. The structure sim-
ilarity index (SSIM) is another widely used metric, which was
originally developed as an image-quality-assessment technique
and is nowadays applied for VQA [19]. Other important methods
include visual SNR (VSNR), visual information fidelity (VIF),
pixel-based VIF (VIFP), information fidelity criterion (IFC),
noise quality measure (NQM), and weighted SNR (WSNR).
We refer to [20] for algorithmic details and implementation.

B. Clinical VQA

Clinical VQA is much more difficult than conventional objec-
tive video-quality evaluation. In fact, we often have to consider
new clinical quality assessment metrics that are unique to each
medical video modality. While some of the basic features of
subjective quality assessment described in recommendation [21]
may be employed during evaluation, clinical factors should al-
ways be considered for the proper modeling of the scoring scale.

III. METHODOLOGY

We provide a diagram of the proposed system in Fig. 2(a)–(c).
In the following, we will provide more details for each block: the
process of determining diagnostic video slices, variable quality
encoding, transmission, the decoded video’s quality assessment,
and material.

The overall system is summarized in Fig. 2(a). The clinical
criteria are used to define the video encoding scheme and the
VQA. For describing the channel, we provide a channel data rate
and a PLR. The targeted mobile device resolution and frame
rate playback is also input to the video encoding block. It is
important to note that the channel may not support playback at
full resolution and maximum frame rates. On the other hand,
there is little reason to transmit at resolutions and frame rates that
will exceed the mobile device playback abilities. This will result
in unnecessary power consumption. We address these issues by
determining the minimum resolutions, frame rates, and channel
data rates that achieve acceptable performance.

We control the target video encoding by adjusting the quan-
tization parameters (QP1 , . . . , QPn ) and the rate of redundant
slices (RSs). Here, the goal is to perform a coarse-to-fine pa-
rameter optimization to determine the minimum bitrates that
provide diagnostically acceptable decoding. It is important to
note that the term “diagnostically acceptable” is based on satis-
fying different clinical criteria.

The basic structure of the encoder is depicted in Fig. 2(b).
Following video resolution and frame rate adjustments (see
Section IV), the clinical criteria are mapped to ROIs. ROIs
are mapped to video slices for independent encoding. The video
quality of each slice is controlled by setting the value of the
corresponding QP, with respect to its clinical significance. The
video slices are then combined to reconstruct the video frames.
The RS parameter is used to control error-resilient encoding.
The approach here is to use a larger number of RS for recover-
ing from larger PLRs.
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Fig. 2. (a) System diagram incorporating all steps in the design of a reliable end-to-end medical video transmission system. (b) Proposed diagnostically
driven variable quality slice encoding scheme using error-resilient techniques. Channel knowledge and end-user equipment are considered during preprocessing.
(c) Objective and subjective VQA and correlation.

Fig. 3. Video-slice encoding and decoding. (a) Video-slice specification. (b) Corresponding QPAmap. (c) Decoded video using variable quality slice encoding.
Here, with QPs 38/30/28 for background/wall and ECG ROIs/plaque ROI and quarter common intermediate format [QCIF-176 × 144 pixels, 11 × 9 macroblocks
(MBs)].

The quality of the decoded video is assessed using both ob-
jective and subjective quality criteria [see Fig. 2(c)]. The cor-
relation between the objective and subjective criteria is also
evaluated. Ultimately, for high correlations, the objective crite-
ria can be used to predict subjective quality. Having said this,
it is often the case that high diagnostic quality can be estab-
lished for high values of the objective evaluation. For example,
video-slice PSNR values over a certain threshold can be used to
establish that the video is of acceptable diagnostic quality. For
objective video-quality criteria, we consider the video-quality
metrics evaluated over the diagnostic video-slice regions (see
Section II-A).

A. Diagnostic Video-Slice Specification

Video-slice specification requires the specification of rectan-
gular regions over the atherosclerotic video (see Fig. 3). Here,
the goal is not to provide accurate segmentation of the plaque or

the different anatomical structures of the video. Instead, we over-
compensate by providing video slices that are sufficiently large
to capture the plaque regions and its walls. Here, video slices are
specified in terms of the boundaries of the standard (16× 16 pix-
els) macroblocks (MB), which are significantly larger than the
pixel-level accuracy required for video segmentation purposes.

To specify the plaque and wall video slice, we use the single-
frame segmentation algorithm introduced in [22]. To account
for both plaque and wall motions, we estimate the maximum
motions by finding the minimum and maximum displacements
over a large number of frames (considering one of every five
frames for the first two cardiac cycles, and one of every ten
for the remaining). This avoids the need for tracking the plaque
and wall throughout the videos. For video encoding purposes,
we then extend out the segmented plaque to fixed size MB
boundaries [see Fig. 3(a) and (b)]. Here, note that an MB is the
basic block unit that each coded frame is partitioned in all video
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encoding standards since H.261 [23]. Furthermore, as noted
earlier, the pixel-level accuracy of the segmentation method
(given by 0.82 ± 0.95 mean ± std pixels) has a limited impact
on the final video-slice specification. The wall ROI is similarly
defined using the lower plaque boundary and the nearest wall.
The success of this approach follows from the fact that these
exams follow a clinically established protocol for visualization
of the plaque type, boundary, and stenosis. The clinical protocol
requires that the ultrasound probe remains steady so that the
observed motion will correspond to actual plaque motion.

When the ECG video slice is to be transmitted, we simply
allocate the lower right MBs for ECG [see Fig. 3(a)]. While
it is not necessary here, we note that detecting the ECG is
straightforward, since it is the only part of the video that appears
in the green color channel.

The video-slice specification procedure can be extended to
handle different scenarios by also allowing manual specifica-
tion. Note that these rectangular regions can be specified quickly
using two mouse clicks (for specifying any two opposing cor-
ners). Recall that the relationship between the selected video
slices and the clinical criteria is given in Table I.

B. Variable Quality Encoding of Diagnostic Video Slices

For the purposes of this study, we need to consider the base-
line profile of H.264/AVC. The baseline profile targets wire-
less video streaming to mobile devices, and incorporates low-
complexity encoder and decoder, low power consumption, and
low latency. New error-resilience features available in the base-
line profile integrated in this study are flexible macroblock or-
dering (FMO) and RS. A thorough overview of the standard,
error-resilience features, and discussion exploiting H.264/AVC
in the context of IP-based networks can be found in [23]–[25].
A detailed discussion of FMO can be found in [26], [27].

We use FMO for independently encoding the diagnostic video
slices. In particular, we use FMO type 2, which allows the
definition of rectangular slices as foreground(s) and background.
In the event of a packet containing slice data gets dropped,
H.264/AVC allows the transmission of RS (an RS being a slice
describing the same MBs in a bitstream).

To enable variable quality slice encoding, we modify the
encoder to support a QP allocation map (QPAmap), which stores
the QP of each MB [see Fig. 3(b)]. The concept is similar with
MB allocation map (MBAmap), which stores the corresponding
slice number that each MB belongs to. These QP (of each video
slice) are parsed via the default configuration file used by FMO
type 2 to define the boundaries of the rectangular ROIs, which
is accordingly modified. Employing these minor adjustments at
the encoder achieves variable quality FMO slice encoding. No
change is made at the decoder, and hence, the resulting bitstream
is H.264/AVC compliant (recall that slices are self-contained;
hence, they can be decoded independently).

Here, we use an IPPP [6] frame type encoding structure, a
GOP of 15 with an I-frame inserted at the beginning of each
GOP, 15 fps and a total of 100 frames per video. Simple frame
copy error concealment method is applied at the decoder to
reconstruct corrupted packets.

C. Transmission Over Wireless Channels Simulation

To simulate transmission errors resulting in packet losses,
like channel fading and congestion, and also account for video
degradation caused by increased latency and jitter, a modified
version of the pseudorandom packet loss simulator included in
JM H.264/AVC reference software [28] is used. The simulator is
enhanced by adding an implementation of the random number
generator described in [29] to provide significantly improved
random performance. A uniform packet loss distribution was
used throughout the experiments and all results were obtained
by averaging ten consecutive runs. Burst errors were simulated
by dropping a maximum of four consecutive packets.

JM 15.1 supports encoding but not decoding of RS; therefore,
we moved this functionality to the packet loss simulator. That is,
in the event of a packet drop, if the redundant representation is
loss free, then that packet is kept and forwarded to the decoder.
We note here that this only works, if the RS are encoded in the
same quality as the original slices, an approach we adopt here.

D. Video-Quality Assessment

We consider independent grading of each of the three clinical
diagnosis criteria listed in Table I. From Table I, we can also
see how each clinical quality criterion relates to the encoding
of specific ROIs. The success of the approach can be justified
provided that the correlation between objective video-quality
metrics and the plaque-type criterion is sufficiently high.

To evaluate the correlation, we use the method described
in [18] to derive Spearman rank order correlation coefficient
(SROCC [30]) and Pearson linear correlation coefficient (LCC
[30]) between objective VQA algorithms and MOS of the clin-
ical ratings. VQA measurements are fitted beforehand to the
clinical ratings provided by the medical experts.

E. Material

A total of ten videos, four of the common carotid artery (CCA)
and six of the internal carotid artery (ICA) compose our dataset
(see Table V). Each video consists of 6.5 s, sufficient for cap-
turing several cardiac cycles. The videos were collected using
the standardization protocol described in [22]. This ensures uni-
form visualization of the plaque morphology. To evaluate the
quality of visualization of plaque type and stenosis, we seek to
use examples with a large diversity in the sizes of the ROIs. In
particular, we are interested in the size of the plaque ROI (see
column 2 in Table V) and the size of the wall ROI (see column
3 in Table V). As seen in Table V, we have strong variation
for both the plaque ROIs (27–85 MBs) and wall ROIs (132–
204 MBs). Overall, we expect larger bandwidth requirements
from the larger ROIs.

IV. RESULTS

We begin with a top-down summary of how we obtained min-
imum bandwidth requirements. This is followed by a summary
of clinical quality assessment and correlation results between
objective and subjective evaluations. In the last section, we pro-
vide minimum bitrate requirements.
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For coarse QP optimization, QP values were varied between
20 and 40 for the atherosclerotic plaque region. Similarly, the
sequence frame rate was varied between 5 and 30 frames per
second. In addition, the number of inserted RS and the corre-
sponding trade-off between bitrate, transmission time, and error
resilience was investigated. The resolution was considered be-
tween quarter common intermediate format (QCIF-176× 144
pixels, 11× 9 MB) and common intermediate format (CIF-
352× 288 pixels, 22× 18 MB). This procedure is depicted in
Fig. 2(a), while [5]–[7] document preliminary results from these
investigations.

The medical experts noted that for a QP of 28, clinical quality
is preserved in the compressed video, carrying almost as much
clinical information as the original. This led to the fine QP pa-
rameter optimization around this value. Thus, a selection of QPs
of 28 and lower were found to qualify for clinical practice (see
Table III). Fifteen frames per second provided acceptable visu-
alization of clinical motion, while clinical quality deteriorated
significantly at less than 10 fps. The CIF resolution was selected,
since it provided quality visualization of the plaque morphology,
as opposed to issues observed at the QCIF resolution. We note
here that CIF resolution video transmission is made possible
due to the proposed variable quality slice encoding approach,
where achieved bitrate reductions allow the transmission over
3G (and beyond) channels without compromising diagnostic
quality. RS utilization was set to one RS for every four coded
slices.

Having found an appropriate range of values for the plaque
region (being the primary focus point of the clinical evaluation),
we then consider slightly higher values (more quantization) for
the wall region, and a significantly higher value for the back-
ground. A low quantization value for the plaque region allows
us to better visualize the echogenic and echolucent areas that
are needed for determining the plaque type. A slightly higher
quantization is all that is needed for identifying the nearest wall
boundary, for visualizing the stenosis. Most of the bandwidth
savings come from quantizing the background region. Here, we
note that we still need to visualize the background regions to vi-
sualize the boundaries and relative motion differences between
the plaque and other arterial regions. Furthermore, quantization
differences between the plaque and the wall video slices have
helped direct clinical attention toward the plaque and its motion
relative to the walls (hence stenosis).

For the results from fine QP parameter optimization, we pro-
vide a comparative evaluation of: 1) FMO with constant QP
video slices; 2) FMO with variable QPs; and 3) FMO with vari-
able QPs with RS for communications in noisy environments.
For each method, we had three sets of quantization levels for
the video slices.

For comparison, we set QP = 24, 28, and 32 for the plaque
video-slice regions for all three cases. Then, for the constant QP
case, all video slices are fixed to the plaque QP value. For vari-
able space encoding, we consider 1) low-bandwidth encoding
using: QPs = 40/34/32 for the background, wall and ECG, and
plaque video slices, respectively; 2) medium-bandwidth encod-
ing with QPs = 38/30/28 (see Fig. 3); and 3) relatively high
bandwidth encoding with QPs = 36/26/24. In addition to the

TABLE II
TOTAL NUMBER OF PROCESSED VIDEOS IN THIS STUDY

no packet loss case, at each quantization level, we have seven
PLRs: 5%, 8%, 10%, 15%, 20%, 25%, and 30%.

We simulated ten packet loss scenarios for each loss rate and
took averages. We thus had three methods × 3 quantization lev-
els× 7 loss rates× 10 simulations per loss rate, for a total of 630
video samples for each of the ten original videos (total = 6300
videos, see Table II).

A. Clinical VQA

During the clinical evaluation, the videos were played back
on a laptop at their original pixel size dimensions. According to
Table I, each diagnostic region received an independent evalu-
ation score. Rating values were between 1 and 5. A rating of 5
was the highest possible. It signified that the clinical capacity
of the decoded video was of the same quality as the original
(uncompressed) video. A rating of 4 indicated that there was an
acceptable loss of minor details. At the lowest scale, a rating of
1 would signify that the decoded video was of unacceptably low
quality. As expected, in most cases, higher quality diagnostic
ROI encoding resulted in better clinical scores at lower bitrates
(compared to the default FMO encoding).

Table III records the MOSs of two medical experts’ ratings on
the corresponding compressed video instances of the selected
QPs range, for the video depicted in Fig. 1(a). Here, Tables III
and IV and Fig. 4 depict results obtained for this particular
video. We also comment on interobserver variability. The medi-
cal experts used in this study each had over ten years experience
in assessing ultrasound videos of the carotid artery. In their clin-
ical ratings, we have found that they did not differ by a rating
of more than 1 out of a maximum rating of 5. For the crite-
ria listed here, we expect that other clinical experts will give
similar ratings. Furthermore, our finding that plaque ROI PSNR
values over 35 dB were rated as diagnostically lossless is also
in agreement with other studies [8].

We give clinical evaluations for PLR up to 15% for plaque
ROI QP of 28 in Table IV. Table IV demonstrates the error
resilience of the scheme incorporating RS, even if channel con-
ditions introduce 15% error on the transmitted stream. Further-
more, it depicts the similar behavior as to video degradation
of the compared approaches that do not utilize RS. An objec-
tive evaluation, shown in Fig. 5, verifies the aforementioned
observations for the whole dataset.

Overall, a selection of ROI QPs of 28 and lower were found
to qualify for clinical practice. Higher QPs may be selected
for urgent clinical practice with respect to bandwidth avail-
ability. Having said this, we caution against the use of higher
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TABLE III
CLINICAL EVALUATION MOSS FOR DETERMINING DIAGNOSTICALLY LOSSLESS

QP. RESULTS ARE FOR THE VIDEO IN FIG. 1(A). CIF RESOLUTION,
AT 15 FPS, NO ECG LEAD

TABLE IV
CLINICAL EVALUATION FOR THE PROPOSED PLAQUE ROI QP OF 28 IN NOISY

CHANNELS. SEE TABLE III FOR VIDEO DETAILS

quantization parameter values in ordinary practice. As an exam-
ple of what can go wrong, we note that in one of the cases [see
Fig. 1(c)], an ulcer on the plaque that was still visible for ROI
QP of 32 was not visible for ROI QP of 36 (see also [5]). The
same observation was true for the video in QCIF resolution.

It’s worth noting here an initially surprising finding. For PLR
of 15%, the scheme incorporating RS attains higher ratings
than when compared to lower PLR of 10%. This detail reveals
an important aspect associated with the clinical evaluation of
medical videos. Consecutive error-free cardiac cycles may prove
sufficient for the physician to reach a diagnosis, even when the
objective VQA ratings suggest the opposite. An issue that must
be taken into consideration and dictates the need of designing
new, diagnostically driven objective VQA algorithms.

Fig. 4. Rate-distortion curves demonstrating compression efficiency near the
diagnostic limit. All three methods are shown for the video of Fig. 1(a). Here,
FMO stands for constant QP parameters, FMO ROI denotes the use of variable
QP encoding, and FMO ROI RS also uses RSs. The distortion is measured in
terms of the PSNR for the plaque ROI. The key point is the significantly reduced
sequence bitrate without compromising clinical quality (verified by Table III).
Indicatively, for this particular video, FMO ROI RS requires 46%, 48%, and
46% less bitrates than conventional FMO for QPs of 32, 28, and 24, respectively
(see text for variable QP parameters). Note that the clinical practice threshold
of 35dB or QP ≤ 28 is independent of the video.

Fig. 5. Quality evaluation for error-prone channels. Here, we evaluate the
PSNR versus PLR curve for the plaque ROI (atherosclerotic plaque) QP of 28,
by providing box plots for the whole dataset. FMO ROI RS achieves graceful
degradation of video quality in the presence of severe loss rates, qualifying
for clinical practice even at 15% loss rate. FMO ROI and FMO suffer severe
degradation, as evidence by the low PSNR values. Bandwidth requirements
reductions are presented in Table V. In each box, the central mark represents
the median, the edges represent the 25th and 75th percentiles, and the whiskers
extend to the most extreme values. Beyond outliers, extreme points are plotted
with hollow circles.

B. Objective VQA and Correlation to Clinical Evaluations

For all cases, Table VI summarizes the correlations between
the plaque ROI-based VQA algorithms and the MOS from two
clinical experts, for clinical ratings for plaque type. SROCC
and LCC were deducted by fitting the VQA ratings to a repre-
sentative sample of 100 video instances. The best results were
obtained by ROI-WSNR with an LCC of 0.690 and an SROCC
of 0.715. ROI PSNR, SSIM, and VIF algorithms attained scores
higher than 0.5.
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TABLE V
DIAGNOSTIC REGIONS OF INTEREST DIMENSIONS AND CORRESPONDING

BITRATE SAVINGS (%)

C. Minimum Bitrate Requirements

In Table V, bitrate savings of the proposed variable quality
FMO with RS scheme when compared to the default FMO
scheme are presented. Right column of Table V incorporates
the bitrate gains for each of the three quantization level sets for
all videos in the dataset. Fig. 6 depicts the required bitrates of
all three investigated encoding methods.

To demonstrate some of the typical bandwidth savings, we
return to Fig. 4. Here, for the video depicted in Fig. 1(a), we
observe bitrate reductions equivalent to 46%, 48%, and 46% for
QPs of 40/34/32, 38/30/28, and 36/26/24, respectively, when
compared to the default FMO encoding.

The introduction of packet losses produces significant drops
in video quality. The drop in video quality more than justi-
fies the overhead of introducing RSs (slightly increased bitrate
compared to FMO ROI encoding, see Fig. 6). To see this, we
re-examine the example in Fig. 5. At 15% PLR, the use of RSs
keeps the clinical video quality at an acceptable level (>35 dB),
while all other methods drop below what is acceptable. In fact,
there is a 5-dB drop in quality for FMO and FMO ROI that do
not use RSs. From Fig. 4, it is clear that both FMO and FMO
ROI methods cannot match this performance without a huge
increase in bandwidth (which would be off the charts of Fig. 4).

In summary, quantization levels of 40/34/32, 38/30/28, and
36/26/24 match typical available download data rates of 2.5G,
3G, and 3.5G of mobile telecommunication networks, respec-
tively. According to [31], theoretical download data transfer
rates extend to 384 kb/s for 2.5G, up to 2 Mb/s for 3G, and
14.4 Mb/s for 3.5G. However, these data rates vary between
countries and network operators. Typical data rates are usu-
ally between 75–135 kb/s for 2.5G, 220–384 kb/s for 3G, and
400 kb/s–2 Mb/s for 3.5G [2]. Upload data rates are impor-
tant for real-time m-health systems from remote locations and
emergency telemedicine. Latest enhancements in 3.5G, namely,

Fig. 6. Box plots for bitrate requirements for the compared schemes for the
nine regular videos of the dataset. Here, the last case, in which the video
represents a closeup on the plaque is considered an outlier (see Table V for
details). We observe that lower quality 40/34/32 (QP4) may be transmitted over
2.5G of mobile communication networks, the recommended case of 38/30/28
(QP5) is well within the typical 3G data rates, while the highest quality of
36/26/24 (QP6) is appropriate for 3.5G networks. In each plot, we display the
median, lower, and upper quartiles and confidence interval around the median.
Straight lines connect the nearest observations within 1.5 of the interquartile
range (IQR) of the lower and upper quartiles. The “+” sign indicates possible
outliers with values beyond the ends of the 1.5 × IQR.

evolved high-speed packet access, promise 1Mb/s in the uplink
(theoretical 40 Mb/s in the downlink and 28 Mb/s in the up-
link) [31]. Network operators in Cyprus offer theoretical upload
data rates of 384 kb/s and 2 Mb/s for two different 3.5G modems.
If the channel data rate input parameter is limited (see Fig. 2),
a further quantization of the background may be required for
seamless streaming.

V. DISCUSSION AND CONCLUDING REMARKS

This paper presents a new approach for effective communi-
cation of wireless ultrasound video over error-prone channels.
Motivated by the need to visualize the plaque boundary, plaque
type, and degree of stenosis, we use automated segmentation to
identify diagnostic ROIs. These ROIs are mapped to video slices
and encoded utilizing FMO type 2. The FMO type 2 concept is
modified to support variable quality slice encoding according to
the slices’ diagnostic importance. By inserting redundant repre-
sentations within the transmitted sequence, the encoded video
becomes resilient to the presence of extensive PLR. Comprehen-
sive experiments using a dataset composed of ten CIF resolution
videos at 15 fps indicate that enhanced diagnostic quality is at-
tained in noisy environments at significantly reduced bitrates.
The proposed system setting is summarized in Table VII.

The quality of the decoded videos was evaluated using several
objective measures computed over the video slices, and also
using clinical ratings. For determining the plaque type, both the
(ROI) PSNR and the WSNR gave very good correlations to the
MOS provided by two medical experts.
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TABLE VI
COMPARISON OF THE PERFORMANCE OF THE VQA ALGORITHMS FOR PEARSON AND SPEARMAN CORRELATIONS

TABLE VII
MINIMUM PROPOSED SETTINGS FOR ATHEROSCLEROTIC PLAQUE ULTRASOUND

VIDEO WIRELESS TRANSMISSION IN NOISYa 3G CHANNELS

Overall, the current study differs from previously published
approaches in: 1) the use of efficient encoding based on the
current state-of-the-art H.264/AVC standard compared to ear-
lier versions of MPEG-2 [11], [12], MPEG-4 part 2 [12], and
motion-JPEG (M-JPEG); 2) the use of error-resilient encoding,
such as FMO and RS; 3) efficient variable quality slice encod-
ing based on clinical significance criteria (multiple ROIs) as
compared to single-ROI studies in [11]–[13]; 4) extensive sim-
ulations for PLR up to 30%; 5) comprehensive subjective and
objective VQA, with correlation investigation; and 6) experi-
mentation using a dataset of ten videos with multiple video in-
stances (6300) compared to limited datasets incorporated by cor-
responding studies in the literature. The findings agree with [8]
and [14] that (ROI) PSNR ratings above 35 dB qualify for clini-
cal practice for CIF resolution ultrasound video (QPs of 28 and
lower attain higher PSNR ratings than 35 dB, see Fig. 4).

Future work includes extending this study to 4G networks
investigating higher quality encodings. A simulation testbed is
currently set for this purpose. Further exploitation of objective
VQA algorithms for deriving the threshold value, above which
diagnostic quality is preserved for each metric, is also planned.
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